Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods.
نویسندگان
چکیده
Although nanoscale hydroxyapatite [Ca10(PO4)6(OH)2; HA] has been widely investigated as a carrier in the delivery of drugs, genes, or siRNA, the in vivo toxicity of nanoscale HA is not clear and the long-term dynamic distribution in vivo has not hitherto been visualized. In this work, gadolinium-doped HA nanorods (HA:Gd) with an r1 value of 5.49 s(-1) (mm)(-1) have been prepared by a hydrothermal method. Samarium-153 ((153)Sm) was then effectively post-labeled onto the HA:Gd ((153)Sm-HA:Gd) with a labeling rate of ∼100% and a radio-labeling stability in vitro of ∼100% over 48 h. The product could serve as a new dual-modality probe for SPECT and MR imaging in vivo. By means of SPECT and MRI, the HA:Gd nanorods were found to be quickly taken up by the mononuclear phagocyte system, especially the liver and spleen. The nanorods in the liver and lung tended to be eliminated within 24 h, but nanorods in the spleen behaved differently and proved difficult to excrete. In vitro studies by cell transmission electron microscopy (TEM) and methyl thiazolyl tetrazolium (MTT) assay showed good biocompatibility of the HA:Gd nanorods with HeLa cells, even at a high concentration. The indicators of body weight, histology, and serology demonstrated that the HA:Gd nanorods exhibited excellent biocompatibility in vivo for at least 61 days. Therefore, (153)Sm-HA:Gd nanorods with excellent relaxivity, γ-emission, and biosafety offer clear advantages and potential for bioapplications.
منابع مشابه
Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution
With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radi...
متن کاملLong term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications.
Although iron oxide magnetic nanoparticles (MNP) have been proposed for numerous biomedical applications, little is known about their biotransformation and long-term toxicity in the body. Dimercaptosuccinic acid (DMSA)-coated magnetic nanoparticles have been proven efficient for in vivo drug delivery, but these results must nonetheless be sustained by comprehensive studies of long-term distribu...
متن کاملHigh quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution.
Polyacrylic acid (PAA) modified NaYF4:Gd/Yb/Er upconversion nanorods (denoted as PAA-UCNRs) are demonstrated for tri-modal upconversion (UC) optical, computed X-ray tomography (CT), and magnetic resonance imaging (MRI). The hydrophilic PAA-UCNRs were obtained from hydrophobic oleic acid (OA) capped UCNRs (denoted as OA-UCNRs) using a ligand exchange method. The as-prepared UCNRs with a hexagona...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملIn vivo Effects of CdSe Injection on Embryonic Development of Reproductive System
The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. Therefore, the cytotoxic effects of CdSe quantum dots on embryonic devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 35 10 شماره
صفحات -
تاریخ انتشار 2014